PROFINET

(using SST Module)

PROFINET Compatibility Addendum Arlyn UpScale

INDUSTRIAL, VETERINARY & CUSTOM SCALES —

59 Second Street East Rockaway, NY 11518 (516) 593-4465 <u>www.arlynscales.com</u>

v3.2.102023

CONTENTS

1	OVERVIEW
	1.1 WHAT IS PROFINET?
	1.2 Purpose of this Document
2	COMPONENT SETUP
	2.1 WIRING
	2.2 Setup
3	STATIC IP CONFIGURATION
	3.1 SST SOFTWARE INSTALLATION
	3.2 Assign Static IP & Device Name to PROFINET Module
	3.2.1 Procedure
	3.2.2 IP Address Conflict Resolution7
4	DATA AREAS - PROFINET ADDRESS MAP7
	4.1 INPUT BUFFER (ADDRESS 0x0000)
	4.2 Output Buffer (Address 0x4000)
	4.3 Weight Status Bitwise Map

1 OVERVIEW

1.1 What is PROFINET?

PROFINET stands as an open Industrial Ethernet solution grounded in global standards, enabling seamless data exchange between controllers and devices in automation settings. Introduced in the early 2000s, it has gained widespread adoption in the realm of Industrial Ethernet.

Being an open standard, PROFINET has sparked the development of a plethora of products by numerous manufacturers, spanning PLCs, PACs, Drives, Robots, Proxies, IOs, and diagnostic tools.

PROFINET facilitates both cyclic and acyclic communication among components, encompassing functionalities like diagnostics, functional safety, alarms, and additional data exchange. This protocol leverages standard Ethernet as its communication medium, with Ethernet cables interconnecting PROFINET components in a network, accommodating the coexistence of various Ethernet protocols within the same infrastructure.

1.2 Purpose of this Document

This addendum will go through the process of setting up your PROFINET add-on to the scale and help you configure the module to fit your network environment.

2 COMPONENT SETUP

2.1 Wiring

PROFINET SETUP w/ ARLYN UPSCALE

Platform Cable – Connects the PLATFORM to the INDICATOR through an M12 Cable.

Indicator & Platform – Components that make up your scale.

Scale Power Supply – Connects the INDICATOR to your power outlet at 5VDC. Supplies power to the Scale (Display & Platform), **PROFINET Module** – PROFINET box that converts weight data from the scale to PROFINET Protocol,

PROFINET Power Supply – Powers up the PROFINET Module at 24VDC separately.

2.2 Setup

The system is designed in such a way so that it is "plug and play" in terms of wiring. Before connecting the scale to your PLC or HMI to communicate in PROFINET, it must be setup to be recognized by your network. The module only accepts Static IP and it needs to be configured accordingly.

- 1) Follow the instructions in the <u>Arlyn UpScale Quickstart</u> and the <u>User Manual</u> to set your scale up accordingly.
- 2) Connect the PROFINET module to the display as shown in the wiring diagram above.
- 3) Connect the included 24VDC power supply to the PROFINET module.
- 4) Connect the module to your LAN Network first to configure Static IP as instructed in the following sections.

3 STATIC IP CONFIGURATION

Follow the instructions below to setup the software to interact with your PROFINET module for Static IP. NOTE: Follow only the instructions below. Do not touch any configuration variables that has been previously setup. These are critical parameters for PROFINET operation.

3.1 SST Software Installation

SST Software is a PC application that is used to interact with and configure the PROFINET module that came with the scale. The software can be downloaded at the following link: <u>https://www.sstautomation.com/DownloadData/Software/SST-TS-CFG_V2.3.2.zip</u>

GT200-PN-RS Test_20231004 V2.3.2.chg - ModbusConfig \times File(F) Edit(E) Tool(T) Help(H) ------C⁺ Ē Ţ <u>1</u> ┶ == 囫 Save Open Add Node Del Node Add Cmd Del Cmd New Upload Download Auto Map Confilct Export Debug Set IP Device Configuration Ethernet Protocols Mode PROFINET ٠ Subnet1-RS485 Manually Assign Assign IP Mode Subnet2-RS232 IP Address 192.168.1.19 -Node-1 Subnet Mask 255.255.255.0 04 Read Input Register Default Gateway 192.168.1.1 05 Force Single Coil DNS1 0.0.0.0 05 Force Single Coil DNS2 0.0.0.0 05 Force Single Coil Number of Input Bytes 256 05 Force Single Coil 256 Number of Output Bytes 05 Force Single Coil PROFINET Config Configuration 05 Force Single Coil 05 Force Single Coil Info News Number Roll Ready

Once the software is installed, running the software will have the following desktop view:

3.2 Assign Static IP & Device Name to PROFINET Module

3.2.1 Procedure

1) On the SST Software, click on the **Set IP** button on the top right corner of the window. This should open a pop-up dialog called "IP Address and Device Name Setting".

		1	₽ (
Auto Map	Confilct	Export	Debug	Set IP					
		DRC	FINET						12
		Man	nally Assign						
		192.	168.1.19	•					
		255.	255.255.0						
		192.	168.1.1						
		0.0.0	0.0.0.0						
		0.0.0	0.0.0.0						
		256	256						
		256			0				
	Configuration								

2) On the "IP Address and Device Name Setting" dialog, click on the **Browse** button.

				Browse
		Subnet Mask		
-	 ÷			
	-		Subnet Mask	Subnet Mask

3) If your device is connected to your network and powered, you should see it appear on the screen listed. Press the Login button to see the Ethernet information of the device.

Device Select				×
192.168.1.19	MAC Address 64-EA-C5-10-85-9E	Device Name dut28	Gateway Address 192.168.1.1	Subnet Mask 255.255.255.0
<				>
Search				
Login		Refresh		Cancel

4) Set your Static IP information as desired.

Target MAC Address	64-EA-C5-10-85-9E		Brows
- Ethernet IP Address	192 . 168 . 1 . 19	Subnet Mask	255.255.255.
Gateway Address	192.168.1.1		
Device Name	dut28		-

IMPORTANT NOTES:

- The initial IP address set for the PROFINET module is set on the 192.168.1.X Subnet. It is possible you may not be able to detect the device if it is not on the same subnet as has been set by our Factory.
- Please make sure your IP address, Gateway Address and Subnet Mask are compatible with each other. For more information on this, ask your IT Personnel.
- All fields must be completed.
- Regarding the "Device Name", if you are using this module as your only PROFINET device, then leave it as "dut28". If you have **more than one device**, then each PROFINET module must have its own unique name and IP address.
- The following rules apply for Device Name:
 - The following are legal names: dut28, dut28nn32, etc.
 - The following are illegal names: 28dut, dut28\$, dut28+uu
- 5) Once you have completed setting up the Static IP, press the **OK** button to confirm.
- 6) Click **Browse** again which will lead to the Device Scanning screen as illustrated in step 3.

7) You should be able to see the new IP address that you have assigned for the PROFINET module.

3.2.2 IP Address Conflict Resolution

According to the specification of PROFINET protocol, acting as a PROFINET slave, the device must obey the rule that there can't be more than 1 PROFINET device which has the same IP address and name on the same LAN when connecting many PROFINET devices.

If there are conflictions of IP address and device name, users can change IP address and name of PROFINET module according to the steps outlined above and ensure that others IP address and name are different

For example: When it happens to IP address confliction, IP address, subnet mask and gateway address of PROFINET module will be reset to "0.0.0.0". To determine this has happened, use the same procedure outlined above to get to the dialog on Step 3 above and hit **Browse**. You will see the following dialog (if there was IP Address Confliction):

IP Address	MAC Address	Device Name	Default Gateway	Subnet Mas
0.0.0.0	64-EA-C5-10-85-53	gt200pnrs	0.0.0	0.0.0.0
<				

Follow the steps once again outlined in the "Assign Static IP and Device Name to PROFINET Module" sectioned above to re-assign new non-conflicting IP address and Device Name.

4 DATA AREAS - PROFINET ADDRESS MAP

PROFINET Addresses for the Input and Output Buffers as related to the scale data are listed live on this link: https://t.ly/4InLG

The scale has two data areas:

Input Buffer (Address Region 0x0000) [Read Only]

Output Buffer (Address Region 0x4000) [Write Only]

A third section (Weight Status Bitwise Map) below shows the bit mapping for address for Input Buffer addresses 0x0010 (Status 1), 0x0016 (Status 2) and 0x0018 (Status 3).

The next sections are a capture of the link at the time of the printing of this addendum. It may not reflect new updates to the address map.

4.1 Input Buffer (Address 0x0000)

The Input Buffer addresses are read by the PROFINET Master (such as a PLC). They are continuously used for "reading" information from the scale through the PROFINET protocol.

PROFINET: INPUT BUFFER [BIG ENDIAN NOTATION]							
KIND	Address	ITEM	DESCRIPTION	NOTES			
		TOP PLATFORM					
	0x0000	Unit (Top Platform)	byte (1)				
	0x0001		byte (0)	0: lb, 1: kg, 2: g, 3: oz, etc.			
	0x0002	Reserved					
	0x0003	Reserved					
	0x0004	Gross Weight value (Top Platform)	byte (3)				
	0x0005		byte (2)				
	0x0006	Gross Weight value (Top Platform)	byte (1)				
	0x0007		byte (0)				
Input Buffer	0x0008	Net Weight Value (Top Platform)	byte (3)				
0x0000 to	0x0009		byte (2)				
(IO-DEVICE ->	0x000A	Net Weight Value (Top Platform)	byte (1)				
IO-CONTROLLER)	0x000B		byte (0)				
,	0x000C	Tare Weight Value (Top Platform)	byte (3)				
BIG ENDIAN	0x000D		byte (2)				
	0x000E	Tare Weight Value (Top Platform)	byte (1)				
	0x000F		byte (0)				
	0x0010	Status 1 (Top Platform)	<u>byte (1)</u>	Data 8-bit "Weight Status", Ref 10009 to 10016			
	0x0011		<u>byte (0)</u>	Data 8-bit "Weight Status", Ref 10001 to 10008			
	0x0012	Displayed value (Top Platform)	byte (3)				
	0x0013		byte (2)				
	0x0014	Displayed value (Top Platform)	byte (1)				
	0x0015		byte (0)				
	0x0016	Status 2 (Top Platform)	byte (1)	Data 8-bit "Weight Status", Ref 10024 to 10032			
	0x0017		<u>byte (0)</u>	Data 8-bit "Weight Status", Ref 10017 to 10024			
	0x0018	Status 3 (Top Platform)	byte (1)	Data 8-bit "Weight Status", Ref 10041 to 10048			
	0x0019		<u>byte (0)</u>	Data 8-bit "Weight Status", Ref 10033 to 10040			

Format of GROSS WEIGHT, NET WEIGHT, TARE WEIGHT and DISPLAYED WEIGHT values

These values are presented in 4-byte Floating Point value. To read the whole weight, the 4 bytes presented must be interpreted as "floating point".

Format of WEIGHT STATUS Addresses

The "Weight Status" registers are further expanded in the Weight Status Bitwise Map section.

4.2 Output Buffer (Address 0x4000)

These addresses are used for sending commands to the scale through the PROFINET protocol. For example, if you want to ZERO the scale from the PROFINET Master (e.g. PLC), send ON (or 1) to address 0x4000 and the scale will zero out. Similarly, the same can be said about changing units, or taring, etc.

Please note that you must <u>clear</u> the address after sending the ON bit. This is done by sending OFF (or 0) to the address. If you don't perform this action, the scale will not respond to another ON command.

PROFINET: OUTPUT BUFFER						
KIND	Address	ITEM		DESCRIPTI	ON	NOTES
		TOP PLATFORM				
	0x4000	Zero	Bit 0	1: Execute		
	0x4001	Reserved	Bit 1	Future expan	sion for Zero operation	
	0x4002	Tare	Bit 2	1: Execute		
	0x4003	Clear Tare Value	Bit 3	1: Execute		
	0x4004	Change Unit	Bit 4	1: Toggle to n	ext active unit	
Output Buffer 0x4000	0x4005	Net / Gross Display	Bit 5	1: Net	0: Gross	1: Toggle Net/Gross
to 0x400F	0x4006	Cycle	Bit 6	1: Toggle Cycl	le (Abort Cycle)	1: Toggle
	0x4007	Average Weight & Hold	Bit 7	1: Start	0: Stop	1: Toggle
(IO-COINTROLLER ->	0x4008	Flow Rate	Bit 8	1: Start	0: Stop	1: Toggle
IO-DEVICE)	0x4009	Log Weight	Bit 9			
	0x400A		Bit 10			
BIG ENDIAN	0x400B		Bit 11			
	0x400C		Bit 12			
	0x400D	User Output 1	Bit 13	1: ON	0: OFF	NA
	0x400E	User Output 2	Bit 14	1: ON	0: OFF	NA
	0x400F	User Output 3	Bit 15	1: ON	0: OFF	NA

4.3 Weight Status Bitwise Map

PROFINET: WEIGHT STATUS (0x0010 - 0x0019)							
KIND	Ref No	ITEM		DESCRIPTION	NOTES		
		TOP PLATFORM					
	010016		Bit 15				
]	010015	Error	Bit 14	1: Error			
]	010014	Weighing Failure	Bit 13	1: Weight cannot be shown for some reason.			
Status 1 - Top Platform	010013	Overload	Bit 12	1: Overload 0: Normal			
(Byte 1)	010012	Stability Control	Bit 11	1: Stable 0: Unstable			
(Input Buffer Address	010011	Motion Detect	Bit 10	1: Motion 0: No Motion			
0x0010)	010010	Zero Tracking	Bit 9	1: "Zero Tracking" in progress			
	010009	Hold	Bit 8	1: Weight Hold 0: Normal			
	010008	Average & Hold in Progress	Bit 7	1: Average & Hold in Progress			
	010007	Tare in Progress	Bit 6	1: Tare in Progress			
	010006	Zero in Progress	Bit 5	1: Zero in Progress			
Status 1 - Top Platform	010005	Gross Display	Bit 4	1: Display Showing Gross			
(Byte 0)	010004	Net Display	Bit 3	1: Display Showing Net			
(Input Buffer Address	010003	Gross Center of Zero	Bit 2	1: "zr" indicator in Gross mode	w/ Motion/Detect Enabled		
0x0011)	010002	Net Center of Zero	Bit 1	1: "zr" indicator in Net mode	w/ Motion/Detect Enabled		
	010001	Stable	Bit 0	1: Green 0: Red			

	010032		Bit 15	
	010031	User input 3	Bit 14	
	010030	User input 2	Bit 13	
Status 2 - Top Platform	010029	User input 1	Bit 12	
(Byte 1)	010028	LO Output	Bit 11	(Weight or Parts Comparator)
(Input Buffer Address	010027	OK Output	Bit 10	(Weight or Parts Comparator)
0x0016)	010026	HI Output	Bit 9	(Weight or Parts Comparator)
	010025		Bit 8	
	010024	Setpoint 8	Bit 7	1: On 0: Off
	010023	Setpoint 7	Bit 6	1: On 0: Off
	010022	Setpoint 6	Bit 5	1: On 0: Off
Status 2 - Top Platform	010021	Setpoint 5	Bit 4	1: On 0: Off
(Byte 0)	010020	Setpoint 4	Bit 3	1: On 0: Off
(Input Buffer Address	010019	Setpoint 3	Bit 2	1: On 0: Off
0x0017)	010018	Setpoint 2	Bit 1	1: On 0: Off
	010017	Setpoint 1	Bit 0	1: On 0: Off
	010048	Mode error	Bit 15	
	010047	Calibration error	Bit 14	
	010046	FRAM error	Bit 13	
Status 3 - Top Platform	010045	A/D error	Bit 12	
(Byte 1)	010044	Checksum error	Bit 11	
	010043		Bit 10	
0x0018)	010042		Bit 9	
	010041	Net display error	Bit 8	
	010040	Tare error	Bit 7	
	010039	Zero correction error	Bit 6	
	010038	Input (A/D) under	Bit 5	
Status 3 - Top Platform	010037	Input (A/D) over	Bit 4	
(Byte 0)	010036	Gross Under	Bit 3	
(input Buffer Address	010035	Gross Over	Bit 2	
0x0019)	010034	Net under	Bit 1	
	010033	Net over	Bit 0	